博客
关于我
工程搭建 打算采用idea maven项目 遇到问题 spark dataset和dataframe问题
阅读量:638 次
发布时间:2019-03-14

本文共 598 字,大约阅读时间需要 1 分钟。

Spark DataFrames和DS (DataSets)是Spark程序中处理数据的核心数据结构,自Spark 1.3.0版本发布以来,随着技术的不断演进,DS逐渐成为新的默认数据处理模式。在Spark 1.6.0版本中,DS被引入,且在Spark 2.0版本中,DataFrame和DataSet ultimately merged into DataSet,进一步简化了数据处理流程。这两种数据结构基于Spark的核心计算模型-Resilient Distributed Dataset (RDD),使它们能够以不同方式支持各种数据处理需求,并通过简单的API实现无缝转换。

DataFrames和DSs都基于RDD,支持灵活而高效的数据操作。选择使用哪种数据结构取决于工作流程的具体需求:如果需要灵活地处理各种数据类型(包括非结构化数据),则DataFrames可能更适合;而如果优化处理高性能计算任务,DSs则提供了更强大的性能支持。这种灵活性使得在Spark程序中无缝切换DataFrames和DSs成为可能,从而让开发者能够根据项目需求选择最合适的数据处理工具。

Spark在不断更新中不断优化了对数据处理的支持,提升了数据操作的效率和性能。无论是处理结构化数据还是非结构化数据,Spark都能通过DataFrames和DSs提供强大的支持,帮助开发者高效完成数据分析和处理任务。

转载地址:http://gmblz.baihongyu.com/

你可能感兴趣的文章
npm run build报Cannot find module错误的解决方法
查看>>
npm run build部署到云服务器中的Nginx(图文配置)
查看>>
npm run dev 和npm dev、npm run start和npm start、npm run serve和npm serve等的区别
查看>>
npm run dev 报错PS ‘vite‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
查看>>
npm scripts 使用指南
查看>>
npm should be run outside of the node repl, in your normal shell
查看>>
npm start运行了什么
查看>>
npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
查看>>
npm 下载依赖慢的解决方案(亲测有效)
查看>>
npm 安装依赖过程中报错:Error: Can‘t find Python executable “python“, you can set the PYTHON env variable
查看>>
npm.taobao.org 淘宝 npm 镜像证书过期?这样解决!
查看>>
npm—小记
查看>>
npm上传自己的项目
查看>>
npm介绍以及常用命令
查看>>
NPM使用前设置和升级
查看>>
npm入门,这篇就够了
查看>>
npm切换到淘宝源
查看>>
npm切换源淘宝源的两种方法
查看>>
npm前端包管理工具简介---npm工作笔记001
查看>>
npm包管理深度探索:从基础到进阶全面教程!
查看>>